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Figure 1: EmBARDiment introduces an attention framework that derives context implicitly from user eye-gaze, and contextual mem-
ory within the XR environment. It uses the implicitly information bundled with explicit verbal inputs to elicit grounded communication
between the User and the AI Agent.

ABSTRACT

XR devices running chat-bots powered by Large Language Mod-
els (LLMs) have the to become always-on agents that enable much
better productivity scenarios. Current screen based chat-bots do
not take advantage of the the full-suite of natural inputs available in
XR, including inward facing sensor data, instead they over-rely on
explicit voice or text prompts, sometimes paired with multi-modal
data dropped as part of the query. We propose a solution that lever-
ages an attention framework that derives context implicitly from
user actions, eye-gaze, and contextual memory within the XR en-
vironment. Our work minimizes the need for engineered explicit
prompts, fostering grounded and intuitive interactions that glean
user insights for the chat-bot.

Index Terms: AI Agents, Chatbots, XR productivity, Multi-
window, AI input.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) has
revolutionized human-computer interaction, with chat-bots such as
ChatGPT [44], Claude [5], and BARD [22] emerging as the pri-
mary interface for engaging with these powerful AI systems. How-
ever, as LLMs continue to evolve, their potential extends beyond
text-based interactions, particularly in the realm of extended real-
ity (XR) environments. Consumer-grade XR headsets (e.g., Apple

Vision Pro, Oculus Pro, Pico Neo Eye) uniquely offer eye track-
ing capabilities/support, which traditional screens lack at a com-
parable consumer level. Leveraging these XR-specific user facing
sensors is crucial for future AI interfaces, as XR users increasingly
interact with AI for productivity tasks or real-world attention ap-
plications. The integration of LLMs as embodied, always-on im-
mersive agents within augmented and virtual reality headsets holds
immense promise for transforming user experiences and enabling
seamless, context-aware assistance.Despite the increasing sophisti-
cation of LLMs, current chat-bot implementations heavily rely on
explicit voice or text prompts, often demanding multiple iterations
to refine the desired tone and context for the optimal output, leading
to lengthy interactions. In XR environments, this approach fails to
capitalize on the diverse range of natural inputs available, as con-
temporary XR headsets (such as Meta Quest Pro [38] and Apple
Vision Pro [6]) are equipped with inward-facing sensors capable of
capturing rich user data. Although recent advancements in LLM
architectures, such as Gemini 1.5 [23], aim to support up to 10M
tokens of context attached to a prompt, the current explicit input
modalities in XR devices remain limited. For instance, speech in-
put has an estimated universal throughput of only 39 bits per second
[16], while text input in XR technologies remains cumbersome and
inefficient [28]. Our approach is particularly useful for XR envi-
ronments due to their large field of view (FoV) displays, which can
support multiple windows for productivity tasks [7, 45]. While it
is possible to provide all the data available on these windows to
LLMs as context, this can result in a large amount of data, mak-
ing the system less responsive, computationally heavy, and chal-
lenging to maintain nuanced conversations, as not all information



may be relevant [33, 31]. Consequently, directly translating explicit
prompt-based chat-bots to embodied agents in XR is likely to be
sub-optimal. To address these challenges, we propose EmBARDi-
ment, a novel approach that leverages an implicit attention frame-
work in combination with a contextual memory to enable embodied
LLM agents in XR environments (see Fig 2). Our solution aims to
implicitly derive context from the user’s actions, eye-gaze, and vi-
sual saliency within the XR environment, minimizing the reliance
on engineered explicit prompts. As a result, we facilitate highly
targeted and intuitive interactions, allowing the agent to infer the
user’s intentions and needs based on their behavior and focus of
attention, both present and past. For example, if a user is read-
ing a document, the agent can access the content the user has read
and utilize it as context for generating relevant responses, along-
side the query prompt. Unlike prior works on gaze in XR that focus
primarily on one-off visual querying [50, 39], our approach com-
bines gaze-saliency context with LLM-powered continued interac-
tion, offering the best of both worlds. We hypothesize that this
approach will enhance user interactions with the embodied agent,
as it establishes a shared ”theory of mind” and provides highly con-
textual assistance, potentially simplifying interactions to the level
of natural language commands like ”put that there” [9].
The primary contributions of this work are as follows:

• We propose a novel attention framework leveraging gaze-
based saliency driven contextual memory for embodied LLM
agents in XR, thus enabling implicit user cues for context-
aware assistance.

• We conduct user studies to empirically evaluate the effective-
ness of our proposed contextual framework in enhancing user
interactions and experience, and showcase its efficacy over
baseline explicit text-based input condition.

2 RELATED WORK

2.1 Context-Aware Assistants for Productivity in XR
The growing interest in XR multi-window environments for pro-
ductivity [7, 45] presents new opportunities and challenges for in-
tegrating context-aware assistants. These environments offer users
cost-effective, customizable, and private workspaces, even on the
go [20, 43]. Moreover, XR multi-window environments can sup-
port remote work by mitigating issues like distractions, insufficient
workspaces, and the struggle to separate work from personal life
[20], maybe even providing better multitasking solutions, as we can
easily maintain multiple windows open at the same time [45], even
on mobile office work settings [43]. The development of context-
aware assistants [18] has seen a plethora of solutions, gleaning in-
sights about the user (e.g. activity [2], pose [51], preferences [17],
task at hand [19]) and immediate environment (e.g. location [37],
ambient light [12]). In the domain of XR, context-aware assistants
have been explored to enhance education [52], industrial training
and maintenance [27] and enable more natural interactions [29].
For instance, in the domain of immersive user experience, [29] pro-
posed a framework that utilises the metadata found in the field of
view to help ground the conversation between human and AI agent
[29]. While context-aware assistants in XR have been explored for
various applications, there is a notable gap in research concern-
ing their application for knowledge workers in XR environments,
despite the recognized potential of XR for enhancing productivity
work [7, 45, 20]. Productivity within XR presents unique chal-
lenges that render traditional AI agent interfaces, such as chat-bots,
inefficient, primarily due to the cumbersome and inefficient nature
of typing in XR [28]. Additionally, alternative channels like speech,
because of their intrinsic limitations [16], are not deemed suitable
to generate the complex prompt required for knowledge workers

[41]. Furthermore, the information accessible across multiple win-
dows in XR environments, perhaps with even more screens open
that in a regular PC, can pose difficulties for assistants in delivering
targeted and efficient productivity support [33]. EmBARDiment
tackles these challenges by employing multimodal interactions and
develops a gaze-driven contextual memory. This approach allows
embodied AI agents to implicitly extract relevant context from the
user’s focus of attention within the XR environment, thereby facil-
itating more productive interactions.

2.2 Gaze attention driven Multimodal XR Interactions

Prior work in HCI leverages inputs such as gaze and pointing ges-
tures concurrently with speech commands to generate multi-modal
interactions [46, 21]. Richard A. Bolt’s foundational study ”Put-
That-There” [9] examined the fusion of vocal instructions and man-
ual gestures to improve engagement with graphical user interfaces.
Likewise, [39] investigated the combination of eye tracking and ver-
bal communication, particularly for engaging with small, densely
arranged on-screen elements. Recent studies have shifted focus to-
wards comprehending visual context and leveraging intuitive com-
munication to improve interactions. Specifically, Sven Mayer et al.
[36] conducted a study that incorporated GPS location and user’s
head gaze into mobile voice assistants, enhancing their comprehen-
sion of nearby shops and buildings by understanding a user’s loca-
tion and visual direction, so that users can perform implicit verbal
requests about their surroundings [36]. Karan Ahuja et al. [4] made
use of speech as a direction communication channel akin to user-
gaze to facilitate interactions across smart environment ecosystems.
Romaniak Yevhen et al. [50] presented Nimble, a mobile interface
that combines visual question-answering frameworks with gesture
recognition, focusing on directive gestures, to enhance user en-
gagement. Sebastian Marwecki et al. [35] exploited the implicit
attention cues of gaze in MiseUnseen to facilitate novel interac-
tions inside XR environments, including creating or arranging ob-
jects covertly at runtime. Riccardo Bovo et al. [10] exploited col-
laborative speech to improve accuracy head-based visual attention
cue’s. These works highlight the effectiveness of using visual atten-
tion or pointing gestures to aid in understanding the user’s intended
referent during verbal requests. However, these works primarily
focus on providing directional information at the moment of the
request. In contrast, EmBARDiment extends these techniques by
implementing a contextual memory that encodes information about
temporal gaze-based saliency, allowing the assistant to leverage this
context up to the moment of the verbal request, thus enabling a
more contextually relevant and efficient interaction paradigm.

2.3 From Chat-bots to Embodied XR Agents

Chat-bots have come a long way since their early days of rudi-
mentary pattern matching, now incorporating sophisticated Natural
Language Processing (NLP) techniques for nuanced text and voice
interactions [3]. Advancements in NLP have enabled these systems
to comprehend complex inputs and generate contextually relevant
responses [13]. This evolution has transformed user interactions
with AI, shifting from typing to voice-based interfaces [34, 48, 53],
reflecting the importance of creating communication that mirrors
human-human interactions [47, 15]. The recent debut of powerful
LLMs like ChatGPT, BARD, and Gemini has sparked renewed in-
terest in AI-driven chat-bot applications [13], leading to increased
user engagement and scientific research [14]. This renewed interest
has also motivated the integration of AI chat-bots and agents into
XR applications, in the form of embodied agents [30, 42]. These
embodied agents aim to further enhance user engagement and natu-
ral interaction through visual and behavioral cues. EmBARDiment
builds upon this renewed interest in embodied XR agents, and in-
troduces an attention based framework that dynamically adjusts to
the user’s current activity and context within the XR environment.
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Figure 2: Schema of EmBARDiment. The attention frameworks leverages implicit eye-gaze to select contextual information and bundles it with
explicit verbal inputs. This elicits grounded communication between the User and the AI Agent.

3 EMBARDIMENT

EmBARDiment is a practical example of our framework that is im-
plemented as an XR application that seamlessly integrates speech-
to-text, text-to-speech, gaze-driven saliency and LLMs to enable
a voice-interactive AI agent within a multi-window XR environ-
ment. In this section, we describe the system architecture (Fig 2),
its key components and their integration. The application was de-
veloped using Unity [1] and deployed on the Oculus Quest Pro
[38]. The code is available at the following GitHub repository:
https://emBARDiment.github.io.

3.1 Embodied AI Agent
EmBARDiment features an embodied AI agent that serves as the
primary anchor and interface for user interaction. The AI agent is
embodied into a cute avatar designed to provide an engaging and in-
tuitive experience by combining verbal and non-verbal cues. When
the AI agent receives a response from the ChatGPT-4 API, it uses
the Google Cloud Text-to-Speech API to generate speech and cor-
responding visemes for lip synchronization and facial animations.
This integration creates a more lifelike and immersive experience
for the user, mimicking human-like interactions. The AI agent’s
embodiment plays a crucial role in establishing a sense of presence
and facilitating natural communication. By leveraging the user’s
gaze and saliency history, the AI agent can move around the differ-
ent windows showcasing visually a level of shared understanding
of the user’s current focus.

3.2 Multimodal Interaction
EmBARDiment leverages multiple input and output modalities to
enable seamless communication between the user and the embod-
ied AI agent [46, 21]. The user can initiate a verbal request by
pressing a key and then speaking (’V’ on the keyboard). The user’s
speech is converted to text using the Google Speech-to-Text API
[24], which sends the audio data to the Google cloud and returns
the transcribed text that is then displayed on the fly in a UI panel
beneath the AI agent, providing visual feedback to the user (see
supplementary video). Once the final transcription is received from
the Google Speech-to-Text API, it is processed by any LLM API for
natural language understanding and generation. The system main-
tains a chat history to preserve the interaction context, allowing the
AI agent to generate relevant and coherent responses. The response
is then displayed on a UI panel beneath the AI agent, and we use
again the Google Cloud Text-to-Speech API [25] but now to convert
the text into speech. This process also produces phonemes and their
corresponding visemes, which are used to animate the AI agent’s fa-
cial expressions and lip movements in sync with the spoken words
[54].

3.3 Gaze-Driven Contextual Memory
EmBARDiment builds on top and extends an existing open-source
multi-window XR environment WindowMirror that captures exist-
ing windows from a PC and renders them inside the XR environ-

ment [11]. EmBARDiment processes each window frame using the
Google Vision API [26] to perform optical character recognition
(OCR), extracting the text content and its position within the frame.
By correlating the spatial position of the text with the eye-tracking
data from the XR headset, EmBARDiment can determine which
text the user is currently paying attention to. The system main-
tains a buffer of the user’s saliency history, preserving the order of
the text to ensure coherence. The system only considers fixations,
which are determined by a spatial and temporal threshold adapted
specifically to the user’s reading task. We consider a fixation if
the gaze spends over 120 millisecond on top of a single word’s
bounding box. The temporal threshold of 120ms is considered the
minimum time required for effective visual information processing
during reading [49]. The contextual memory in our system has a
maximum capacity of 250 words to enable basic episodic memory,
rather than long term memory. This capacity was defined during the
pilot studies. For context, our texts ranged from 240 to 400 words
in length, and participants took approximately one minute to read
each text in full.. Our agent contextual memory works by simply
discarding older information as the user focuses on new content.
When the user makes a verbal request, the contextual memory is
combined with the user’s query and sent to the ChatGPT-4 com-
pletion API for processing. This approach allows the AI agent to
generate responses that are grounded in the user’s current focus and
saliency history. After each request, the contextual memory buffer
is cleared. Below you can see an example of the generated Prompt
containing the user verbal request , some prompt engineering and
the gaze-driven contextual memory:

User’s verbal request
Prompt Engineering
Contextual information

{
"role": "user",

"message": user verbal request from speech-to-text.

Below is a dataset representing my visual attention it

contains the text i have been reading from the windows

I have been observing. Please use this information to

inform your response to my request.

window_id_1: {gaze-selected text on window_id_1},
window_id_2: {gaze-selected text on window_id_2}.
Respond with 6 sentences max, keep it under 400

characters maximum.".

}

4 EXPERIMENT

To evaluate EmBARDiment, we conducted a user study. Our evalu-
ation aims to determine (i) the merit of visual attention as a method
for selecting contextual information, and (ii) to evaluate the differ-
ent options for agent embodiment and the positioning of the agent.



Figure 3: Experiment Conditions. (A) Baseline: no contextual information selected. (B) Full-Context: All the contextual information are selected.
(C) Eye-gaze: information are selected based on eye-gaze fixations.

4.1 Participants
We recruited 15 participants (10 male, 6 female, MAge=31.4,
SDAge=5.9 years). Since in the experiment we use speech-to-text
technologies we evaluated English speaking proficiency: on a scale
from 1 (poor) to 5 (excellent), resulting in an average rating of
MEnglish=4.81 SDEnglish=0.425. note that for 10 out of 15 partic-
ipants English was their primary language. Additionally, since in
the experiment we use eye-tracking technologies we also evaluated
vision. In terms of vision correction, 5 participants reported having
normal vision, while all the others had vision corrected to normal;
6 wearing glasses and 4 contacts.

4.2 Design
We designed a within-participant experiment with 3 conditions and
3 tasks, each participant completed 3 tasks. A Latin square de-
sign balanced the assignment of the 9 unique task-condition com-
binations, ensuring equal representation across 15 participants. Al-
though presentation order was not fully counterbalanced, each con-
dition appeared in each ordinal position (first, second, third) an
equal number of times. The 3 conditions:

• A Baseline condition in which there is no contextual informa-
tion added (see Fig 3a).

• A Full Context condition where all the contextual information
is selected independently of the user’s visual attention (see
Fig 3b).

• An Eye-Tracking condition which selects information based
on eye-gaze data (see Fig 3c).

The quantitative and qualitative comparison between these con-
ditions will establish if and how contextual episodic memory will
enable more implicit communication and better understand the role
that eye gaze will play with AI agents in XR.

4.2.1 Q&A Reading Task

The three bodies of text of 270 to 400 words each, were selected
for the experiment. All texts had a common thematic of Quantum
Computing. The first was based on a Medium article about the
”Schrödinger’s Cat” 1; the second was a Harvard Business Review
article: ”Quantum Computing Is Coming”2, and the third was a

1https://medium.com/swlh/quantum-computing-for-dummies-part-1-
2686b9ba3c51

2https://hbr.org/2021/07/quantum-computing-is-coming-what-can-it-do
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Figure 4: Experiment layout, as seen by the participants during the
experiment. The 3 texts are fixed for all participants to maintain
stimuli consistency. The layout of windows spawned 1 meter away
from the user’s head, spanning 120◦(60◦on the left and 60◦on the
right), and a resolution of 700x1200 px. A 3D model of the layout
with reference textures is available at the following GitHub repository:
https://emBARDiment.github.io.

Wikipedia article discussing ”Qubits” 3. The two questions regard-
ing each reading were intentionally designed to be implicitly related
to the context of the text and essentially meant to ask clarifications
on what the participant had just read.

cat Questions for the ”Schrödinger’s Cat” text:

1. Why is it set to 50%?

2. I am confused, is the cat alive or dead?

HBR Questions for the ”Quantum Computing Is Coming” text:

1. What are the capabilities of computers nowadays?

2. What problems do traditional computing devices strug-
gle with?

wiki Questions for the ”Qudits and qutrits” text:

1. What letter can I use to denote the dimension of the
system?

2. I am confused about how many levels are possible?

3https://en.wikipedia.org/wiki/Qubit



4.2.2 Multi Window Layout
The window layout, as shown in Fig 4.3.3, is an essential part of the
task. The layout is intended to mimic aspects of productivity work,
such as multitasking, by having multiple application windows open
simultaneously. This setup mirrors common scenarios in physical
multi-screen environments where multiple windows are open and
used at the same time by users.

4.3 Procedure
Participants received a project overview, consent form, demo-
graphic questionnaire, and experiment instructions. The experi-
ment began with a reminder of their right to withdraw and the
opportunity to seek clarifications. Our institution does not run an
Ethics committee but does intensive training for employees and in-
terns on to how to perform user studies ethically. All the authors
running studies did complete the training.

4.3.1 (Part 1) Q&A Paper Reading:
We asked participants to read the selected texts on paper. We then
presented two questions about each text . This procedure was re-
peated for all three bodies of text (Section 4.2.1). This initial step
was used to make participants familiar with the questions and rele-
vant information within the texts.

4.3.2 (Part 2) XR Onboarding:
After answering the questions, participants engaged in a similar
task but this time inside XR and interrogating the AI Agent. To
guarantee a successful experiment, participants were helped with
the XR headset and were guided to perform eye-tracking calibra-
tion and testing. Participants were then asked to open the XR appli-
cation and familiarize themselves with the modality of interaction
with the AI Agent (i.e., button press and verbal request).

4.3.3 (Part 3) Q&A AI Agent Text Interrogation:
Then, in the XR experience, they were again presented with the
same 3 texts, each one visible on one of the 3 screens as shown in
Figure . They were asked to read the text till they reach the text
part pertinent to the question rehearsed on Part 1. Then they had
to ask the questions to the AI agent and keep asking until the agent
produced a satisfactory response, i.e. a response equivalent to their
own early reply outside XR. We instructed participants to main-
tain the original implicit formulation of their questions in the first
attempt inside XR. If they did not receive a relevant answer, they
were allowed to reformulate their question up to five times in an
attempt to generate a contextually meaningful response. After five
attempts, the experimenter would prompt them to move on. The
study was structured around the different experimental conditions
(baseline, full context, eye-tracking). And each condition had one
of the three reading tasks (i.e. one of the screens) randomly as-
signed (cat, HBR, wiki), so they varied by participants.

4.3.4 (Part 4) Experience Survey:
Following each completed condition, participants were asked ques-
tions from a subset of the Human Language Model Interaction
Questionnaire (HLMIQ) [32] shown in Table 1, and gave verbal
responses while the experimenter annotated those responses.

4.3.5 (Part 5) Agent Embodiment Preferences:
Upon completion of the Q&A tasks/survey, the study transitioned to
the exploration of AI agent embodiment preferences. Participants
were introduced to different possible embodiment types (no embod-
iment, non-anthropomorphic, or anthropomorphic embodiment), as
shown in Figure 9, and embodiment location (general fixed, or con-
textual positioning such as following the active window), as shown
in Figure 10. Participants were asked to engage with each option
to form a basis for their preferred choice ( Table 2), and they could

change the options using the joystick on the XR controller. The ex-
periment structure allow participants to first acquire a grounding on
the experience of interaction with the agent before expressing pref-
erences about its embodiment, and position in the multi-window
environment.

4.4 Questionnaires

To better characterize the user experience beyond the quantitative
analysis of the attempts, we asked participants to fill a subset (Ta-
ble 1) of the HLMIq [32]. The HLMIq assesses important aspects
such as: Helpfulness, Ease, Enjoyment, Satisfaction, Responsive-
ness of the AI Agent.After each experimental block consisting of
the 3 trials/texts, each participant was shown a few options in terms
of Embodiment Type and Location within the multi-window space
and then completed a survey on (Table 2).

Table 1: Human Language Model Interaction Questionnaire

Aspect Question Answ.
Type

Helpfulness

Independent of its fluency, how help-
ful was your AI Teammate in answer-
ing the questions?

Likert

Why did you find the AI Teammate
helpful or unhelpful? Give a concrete
example if possible.

Open

Ease How easy was it to interact with the
AI Teammate? Likert

Enjoyment How enjoyable was it to interact with
the AI Teammate? Likert

Satisfaction I am satisfied with the answer I re-
ceived? Likert

Change
Did the way you chose to interact
with the AI Teammate change after
the first question? If so, how?

Open

Description What adjectives would you use to de-
scribe the AI Teammate? Open

Responsiv. How responsive was the system? Likert

Table 2: Survey on Agent Embodiment Preferences

Aspect Question Possible Answers

Embodiment
What of these 3 op-
tions do you prefer?

1)Lack of embod-
iment 2) Non-
anthropomorph.
3)Anthropomorph.

Why did you choose
the embodiment type? (Open ended)

Location
What of these 2 op-
tions do you prefer?

(1) Context-following,
(2) Fixed

Why did you choose
the location? (Open ended)

5 RESULTS

Each of the 15 participants had to ask the AI agent 2 questions
across the 3 conditions leading to a total of 90 questions. The po-
tential attempts to reach satisfactory answers can range from red 90
to 450 (as each participant could reformulate the same question 4
times). In total we collected 184 attempts on the experimental set-
ting. After each of the 3 conditions, participants completed Human
Language Model Interaction questionnaires leading to 45 question-
naires. Participants also completed the agent embodiment question-
naires, leading to 15 filled surveys.



5.1 Question Attempts

In our experiment, participants interrogate an AI agent, in search
for explanations related to a featured text. If the AI’s response is
irrelevant or unacceptable, participants reformulate their question,
a maximum of five times to obtain an acceptable answer. Fewer
attempts indicate better performance, as they signify less effort to
reach an acceptable answer. We analyzed the dialogues to count
the number of attempts, totaling 184 verbal requests. To compare
the number of attempts across conditions, we performed a repeated
measures ANOVA with Condition as a three levels factor (baseline,
full context, eye-tracking) . Fig 5.

Figure 5: Box plot comparing participants’ attempts. Each partici-
pant answered two questions, with up to five attempts per question.
Significant differences highlighted: * p < .05, ** p < .01, *** p < .001.

The ANOVA on the number of questions attempts indicate a signifi-
cant difference between the conditions (F(1.428,19.993)= 26.416,
p < .001), Greenhouse-Geisser correction was applied. To fur-
ther unpack the results, we conducted pairwise post-hoc compar-
isons using dependent-samples t-tests with a Holm correction, re-
vealing significant differences across all conditions. The compar-
ison between the number of attempts in the Baseline (M = 5.93,
SD = 1.58) and Full Context (M = 4.20, SD = 1.32) revealed a
significant difference of (MD = 1.73, pHolm = 0.012) and a large
effect size (Cohen’s d = 1.393), indicating a significant reduction in
the number of attempts in the Full Context condition. This reduc-
tion in attempts is further emphasized in the comparison between
the Full Context and Eye-Tracking (M = 2.53, SD = 0.64), which
showed a significant difference of (MD = 1.67, pHolm = 0.001) and
an large effect size (Cohen’s d = 1.339), demonstrating a further
decrease in number of attempts for the Eye-Tracking condition. To
further clarify the results, we utilized a Sankey plot to illustrate the
success rates at each attempt (Fig 6). In the Eye-Tracking condi-
tion,over 90% of participants achieved the intended result on the
second attempt. In the Full Context condition, over 90% succeeded
by the fourth attempt. In contrast, in the Baseline condition, 90% of
participants reached a satisfactory result only by the fifth attempt.

5.2 HLMIq

Participants completed HLMIq questionnaire after each experimen-
tal condition, resulting in a total of 9 entries per condition and 45
overall. We used the Aligned Rank Transform (ART) ANOVA [55],
which accommodates within-subject designs and ordinal data, such
as Likert-scale responses. If a significant effect was detected, we
conducted pairwise post-hoc comparisons using Tukey’s Honestly
Significant Difference (HSD) test on ART-transformed data (ART-
lm).4 Significant effects were found for Helpfulness and Satisfac-
tion, while no significant results emerged for Ease, Enjoyment and
Responsiveness. For conciseness, we only report the analysis of the
former.

4We used the ARTool implementation for R: https://github.
com/mjskay/ARTool, based on the original method: https://depts.
washington.edu/acelab/proj/art/.

Figure 6: Sankey diagram depicting the success rate at each subse-
quent attempt (i.e., up to five attempts per question).

5.2.1 Satisfaction (Likert)

The ART revealed a significant on Satisfaction scores (F(2,28) =
15.565, p < 0.001). Post-hoc pairwise comparisons between Eye-
Tracking (Mdn= 5, IQR= 1.0) and Baseline (Mdn= 3, IQR= 2.0)
highlight that Eye-Tracking had significantly higher Satisfaction
scores (p < 0.0001). Similarly, post-hoc pairwise comparisons be-
tween Eye-Tracking and Full Context (Mdn = 4, IQR = 0.5) high-
light that Eye-Tracking had significantly higher Satisfaction scores
(p = 0.0102). Although Baseline and Full Context differed in
median scores, the difference did not reach statistical significance
(p = 0.0585).

Figure 7: Satisfaction responses to the HLMIq. Significant differ-
ences highlighted with: * p < .05, ** p < .01, *** p < .001.

booktabs

5.2.2 Helpfulness (Likert)

The ART revealed a significant effect on Helpfulness scores
(F(2,28) = 14.787, p< 0.001). Post-hoc pairwise comparisons be-
tween Eye-Tracking (Mdn= 5, IQR= 0.5) and Baseline (Mdn= 3,
IQR = 2.0) show that Eye-Tracking was rated significantly higher
(p < 0.0001). Similarly, comparisons between Eye-Tracking and
Full Context (Mdn = 4, IQR = 1.0) reveal that Eye-Tracking
demonstrated significantly higher helpfulness (p = 0.0079). How-
ever, no significant difference was found between Baseline and Full
Context (p= 0.1007). These results are consistent with the findings
from our quantitative analysis of question attempts.



Figure 8: Helpfulness responses to the HLMIq. Significant differ-
ences highlighted with: * p < .05, ** p < .01, *** p < .001.

5.2.3 Helpfulness (Open)
To further unpack this result we tap on the Open ended question
of the HLMIq:“Why did you find the AI Teammate helpful or un-
helpful?” For the Baseline condition, participants noted that the
initial answers of the AI Agent were general and unrelated to the
context of the text and that a satisfactory answer was only obtained
after significant prompting. P5: “..it did not give any specific in-
formation to the text i was reading..” P8: “..took a lot of prompting
for the first answer but did really good in the second question..”
For the Full Context condition, participants experienced mixed re-
sults saying that the journey to the correct answer was often cum-
bersome P3: “..it was able to answer my question even if it took
multiple attempts.” P5: “..it’s giving a very generic answer, un-
less I asked twice and be specific.” In the eye-tracking condition,
participants reported accurate answers straight to the point. P4:
“..it answered the question very accurately.” P9: “..it answered the
questions straight away.”

5.2.4 Behavior changes (Open)
To better understand the differences between conditions we also
looked at the quesiton: “Did the way you chose to interact with
the AI Teammate changed after the first question? If so, how?”.
In the Baseline condition the majority of responses indicate par-
ticipants provided more information in an attempt to guide the AI.
P6: “I gave explicit content from the article to ensure it gave me
the right answer.”, P9: “I gave more context to it.” Participants re-
ported learning from their initial interaction, indicating an iterative
process of adjusting their approach based on the AI’s responses. In
the Full Context condition the majority of participant still reported
the same strategies “of adding more information”.

5.3 Conversation Evaluation
We review the recorded conversation to better characterize the dif-
ferences between the Full Context and Baseline condition. And to
understand how and why the Full Context condition failed in an-
swering correctly.

5.3.1 Conversation Examples
To further support this section we report two full example conver-
sations from participant P2. Similarly to the HLMIq we also find
two strategies in these examples:

Strategy 1: Referring to Context

Strategy 2: Adding More Information

Example 1 (P2) Baseline:

Participant 2 : Why is the chance of radioactive

decay 50%?

AI Agent : The chance of radioactive decay is not

inherently 50% for all isotopes...

Participant 2 : In this example , though. Why is it 50%?

AI Agent : In your example, if the chance of decay

is 50%, it means we’re looking at a

specific moment..

Participant 2 : In the Schrödinger’s cat example ,

why is the chance of decaying 50%?

AI Agent : In Schrödinger’s cat thought experiment,

the 50% decay chance is a simplification

to illustrate quantum superposition..

Example 2 (P2) Full Context:

Participant 2 : What are the core capabilities of

nowadays computers?

AI Agent : Quantum computers harness the

principles of quantum mechanics to

process information....

Participant 2 : What are the core capability of

computers described in this article ?

AI Agent : The article highlights that digital

computers excel at arithmetic

operations...

Example 3 (P2) Eye-Tracking:

User : What’s the term that describes the capabilities of

computers?

AI Agent : The term that describes the capabilities

of computers is arithmetical machines.

5.4 Agent Embodiment Preferences
This Agent Embodiment Preferences Survey was once by each par-
ticipant at the end of the whole procedure (n=9).

5.4.1 Agent Embodiment Type

When we asked, “How do you prefer the visual representation
of a digital assistant to be designed?” Participants were shown
three options: Lack of Embodiment, Anthropomorphic, and Non-
anthropomorphic. After experiencing each of the conditions, partic-
ipants were asked to express a preference. The option that received
the most preferences was Anthropomorphic (75%), followed by
Non-Anthropomorphic (18.7%) and Lack of Embodiment (6.3%)
(Figure 9).

Figure 9: Circle chart representing user’s preferences in terms of
embodiment’s type.

To further unpack these results, participants were asked to jus-
tify their preferences. Those whose preference was anthropomor-
phic mentioned a desire for interactions that mimic human com-
munication. P6: “A human-like agent makes me a bit less self-
conscious about making a verbal request”. However, many who
expressed a preference for the anthropomorphic design were flex-
ible about the representation; they would be fine with an abstract,
non-anthropomorphic option, as long as it was visually present. P1:
“I don’t mind between the two as long as it is represented. I don’t



want the disembodied because I don’t know if it’s present or listen-
ing to me.” The representation in a visual form was signifying to
participants the assistant’s presence and attentiveness. P5: “I like it
to be there because it reminds me that I can ask questions” Those
who chose lack of embodiment valued the absence of representa-
tion, as it was non-distracting and not visually imposing.

5.4.2 Agent Embodiment Location
In a similar way we then asked participants, “Where do you prefer
the AI assistant to be located?” giving them two choices: Context-
following or Fixed. After showing these options to participants
and addressing any questions, they were asked to make a choice.
Most participants preferred Context-following (68%), but around
one-third opted for Fixed (32%) (Fig 10).

Figure 10: Circle chart representing user’s preferences in terms of
embodiment’s location.

When asked To justify Context-following choices participant
mentioned a desire for the digital assistant to be easily accessible
without requiring the user to turn their head or attention.P2: “I
don’t have to turn my head. ” P7: “I would want the avatar to fol-
low my gaze better. ” The context-following group also highlighted
a desire for clarity in how the assistant’s movements and position-
ing reflect its awareness of the context. P1: “Context following
makes it easier for me to understand what the avatar is aware of.”

6 DISCUSSION

6.1 Why the AI Agent failed in Full Context Condition
We further look at the results and we find a general consistent trend:
the AI Agent failing on the Full Context condition. But what are the
differences between the Full Context and the Baseline conditions
that cause this? One of our main learning was that the AI Agent
performance faltered in the Full Context condition when compared
to the Eye-Tracking condition, we believe this is due to the expan-
sive context, which allowed for multiple potential answers. This
was in stark comparison to our 250 word episodic memory imple-
mented for gaze. For instance, if we look at the Conversation ex-
amples (section 5.3.1), in the ”Example 2 (P2) Full Context”, to
the question ”What are the core capabilities of nowadays comput-
ers?” the AI Agent answer ”Quantum computers harness the prin-
ciples of quantum mechanics to process information” is influenced
by the broader context about quantum computing, as all 3 articles
talk about quantum computing while only one talks about the capa-
bilities of computers nowadays. Given that the Full Context is pri-
marily concerned about quantum computing, the AI Agent tended
to focus its answers on quantum computers, illustrating how exten-
sive context can skew its responses. This led to inaccuracies, as the
model struggled to integrate the question on the specific context the
user was reading.

6.2 Strategies for Full-context and Baseline
Participants reported employing a strategy consisting of ”adding
more information” across both conditions, however, by analyzing

the conversation we found that this actually encompassed two dis-
tinct strategies.

Strategy 1: Referring to Context - This strategy prompts the AI
Agent to consider the context in which a question is asked. While
it showed limited success in the Baseline condition due to the lack
of contextual information, its application in the Full Context condi-
tion demonstrated a notable impact. For instance, when Participant
2 initially asked about the core capabilities of modern computers,
the AI Agent’s response was skewed towards quantum computing.
However, when the participant refined the question to focus on the
context described within the article, the AI Agent adjusted its search
within the given context and identified an accurate alternative.

Strategy 2: Adding More Information - This strategy entails
providing additional, and specific information to the AI Agent, al-
lowing it to leverage its internal knowledge base. For example,in
the Baseline condition, questions about why the chance of decay
was 50% in which the AI Agent had no context led to wrong re-
sponses. When ”Schrodinger’s cat” was mentioned, the AI Agent
could tap into its existing knowledge and provide a good response.

6.3 Design Considerations
In the realm of AI Agents in multi-window XR environments, our
research underscores the critical importance of integrating implicit
and explicit inputs to enhance user interactions.To fully enable the
integration of explicit and implicit inputs, we propose the alignment
between visual attention and verbal input that can enable contextual
memory. A new standard for capturing and leveraging user engage-
ment history. This might prove especially relevant in the context of
information-rich multi-window environments where there might be
multiple contextual targets for an interaction potentially spanning
across multiple windows.

Multi-modal input: developers should focus on harnessing the
complementary strengths of visual attention and verbal communi-
cation to craft AI agents that are both intuitive and responsive to
user input. Visual attention serves as a subtle yet powerful signal
for context recognition, allowing the AI to grasp the user’s focus
without invasive prompts. Concurrently, verbal requests provide a
direct avenue for users to convey their needs and queries. Our ap-
plication showcases how directing the AI Agent’s attention to user-
focused context mitigates the challenges associated with processing
extensive inputs. By aligning the AI Agent’s focus with the user’s,
especially in scenarios requiring immediate clarification on recent
interactions, the system gains a significant edge over models bur-
dened with the entirety of available context.

Episodic vs Long-term Memory: our agent contextual memory
works by simply discarding older information as the user focuses on
new content. The contextual memory in our system has a maximum
capacity of 250 words to enable basic episodic memory, rather than
long term memory. Changing the capacity will impact the LLM
performances (i.e. responsiveness) and has the risk to run into the
same problems we found on the Full Context condition. Therefore,
after each request, the contextual memory buffer is cleared, ready
to capture new context.

7 LIMITATIONS AND FUTURE WORK

A limitation of this system might be related to the underlining eye
tracking technology, for example participant behaviour may cause
the eye tracker to slip on the participant’s head, potentially strongly
affecting data quality [40]. Moreover the variability of eye-gaze
accuracy across different users, eye traits of ethnic groups may af-
fect the accuracy of eye trackers. For example, a study by Blig-
naut and Wium [8] shows that Asian participants’ eye-trackers ac-
curacy was worse than that of African and Caucasian participants.
To address these limitations, extended evaluations should consider
factors such as individual differences in eye characteristics and the
impact of prolonged testing over extended work hours. The current



study focused on a scenario which requires the AI Agent’s atten-
tion aligned with the user’s attention to provide clarifications on
recently observed content. This approach assumes the user’s visual
focus aligns with their informational needs. However, scenarios
exist where the AI Agent’s focus might need to diverge, exploring
content the user hasn’t directly engaged with—perhaps to highlight
overlooked details. Future work should expand beyond this align-
ment, enabling the AI Agent to consider broader or alternate con-
texts.

8 CONCLUSION

EmBARDiment, explored a novel framework for integrating
context-aware embodied AI agents within extended reality (XR)
environments. Our solution goes beyond conventional explicit
text-based chat-bots and leverages an implicit attention frame-
work to streamline communication and make it more contextually
grounded. We utilize the user’s gaze and visual saliency to de-
rive relevant context. We ran an experiment comparing three in-
teraction conditions —without context, with full context, and with
eye-tracking user-focused context—, participants interacted with an
AI agent, adjusting their questions based on the agent’s responses.
Findings indicated that using visual attention to guide contextual
memory selection resulted in fewer question reformulations and
enhanced user satisfaction and perceived helpfulness of the sys-
tem.This supports our hypothesis that such an approach can en-
hance interaction efficiency with AI Agents in multi-window XR
settings. Our gaze-driven contextual memory extends previous re-
search [36, 50, 39], on multi modal interaction gaze + speech. Ad-
ditionally our findings highlight the potential to streamline user in-
teractions with AI agents in XR offering specific Design consid-
erations for the design of AI agent functionality in multi-window
settings.
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